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LETTER TO THE EDITOR

Cyclic rotations, contractibility and Gauss–Bonnet
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Abstract. Let a rigid object or frame of reference have identical initial and final orientations
but be rotated in any way in between, with an angular velocityω(t). Any unit vectoru(t)
carried with the frame passes through a cycle of directions enclosing a solid angle�. The full
relation between these three quantities is shown to be 2πn = � + ∫ ω · u dt,mod 4π , where
the turn numbern is zero if the sequence of orientations of the frame is contractible and unity
if it is non-contractible. The main derivation uses the Calugareanu relation,Lk = Wr + Tw,
between linking number, writhe, and twist of a ribbon loop. An outline alternative derivation
uses the Berry phase of a quantum spin1

2 . Finally the result is applied to the standard parallel
transport holonomy expressed in the Gauss–Bonnet theorem: it is refined to be correct mod 4π

rather than merely mod 2π .

Let a rigid object or frame of reference have identical initial and final orientations but be
rotated in any way in between, with an angular velocityω(t). Any unit vectoru(t) carried
with the frame passes through a cycle of directions enclosing a solid angle�. The full
relation between these three quantities will be shown to be

2πn = �+
∫
ω · u dt mod 4π (1)

where the turn numbern is zero if the sequence of orientations of the frame is contractible
and unity if it is non-contractible. The result (1) reduced to mod 2π , that is, with the term
2πn replaced by zero, is essentially well known [1–3], for example, being associated with
the standard parallel transport holonomy expressed in the Gauss–Bonnet theorem (see final
paragraph below). However, the solid angle is defined mod 4π , not mod 2π , and this invites
refinement of the equation to mod 4π , with (1) as the outcome.

The main derivation of (1), given now, is geometric, using the Calugareanu relation
(2) for a ribbon loop in space [4–6]. (An alternative derivation using the Berry phase of
quantum spin1

2 is outlined near the end.)

Lk = Wr + Tw. (2)

The origin of this relation can be indicated once the meanings of the terms are explained in
the next few paragraphs. The integerLk is the number of 2π twists in the ribbon, counting
the right-hand screw sense as positive (beware, however, the different technical meaning
of ‘twist’ below). The ribbon, which is supposed indefinitely narrow, has two edges which
are nearly parallel loops in space andLk is the number of times one loop winds around the
other; that is, their ‘linking number’ defined by an integral around each loop

Lk = 1

4π

∮ ∮
(r − r′) · (dr∧dr′)
|r − r′|3 . (3)
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Figure 1. Ribbon loop with the natural orthogonal frame defined by the unit tangent vectoru(t)
at positiont along it, the ribbon unit normal vector and and the third orthogonal unit vector.
The ribbon shown, being untwisted, hasLk = 0 but Tw 6= 0, probably.

This can be understood as the line integral around one loop of the magnetic field due to a
hypothetical currentµ−1

0 in the other.
For the ‘twist’ Tw the natural othogonal frame is defined at any point on the ribbon

(figure 1) based on the unit tangent vectoru, the ribbon normal and their cross product. If
t is a coordinate along the ribbon (which will later be specialized to arc length), increasing
in the direction ofu, then

Tw = 1

2π

∫
ω · u dt (4)

whereω is the ‘angular velocity’ vector of the frame with respect tot , and the integral is
over the whole length of the ribbon. The quantityTw is a real number which depends only
on the shape of the ribbon, not the coordinatisation.

‘Writhe’ Wr is only a property of the central axis loop of the ribbon which lies midway
between the edge loops. Once this axis loop is defined the ribbon itself can be discarded as
far as writhe is concerned. It is defined algebraically as self-linking: the integral (3) with
the two loops coincident along the ribbon central axis

Wr = 1

4π

∮ ∮
(r − r′) · (dr∧dr′)
|r − r′|3 . (5)

This is again a real number with a geometric interpretation. The chords of the axis loop form
a two-dimensional family parametrized byt and t ′, the endpoint coordinates. The chord
directions, or unit vectors, thus form a net on the unit sphere (figure 2) andWr is the total
area of the net divided by 4π . The net is bounded by two closed curves which are mutual
inverses through the sphere centre. These curves represent the tangent vectorsu(t), and its
reverse, which are the limiting chord unit vectors ast → t ′ for t < t ′ and t > t ′. Being
mutual inverses, the solid angles enclosed by the two bounding curves are±�mod 4π .
The difference of their solid angles is the solid angle in between them, 4πWr mod 4π .
ThereforeWr = �/2π mod 1.

This fact was initially observed by Fuller [7], using a different argument, and indeed
refined to the form required here

Wr = 1+�/2π mod 2. (6)

This refined form follows from recognizing that (6) is true for a circle (Wr = 0, � = 2π ),
andWr changes continuously under deformation except for jumps of 2 when the loop crosses
itself. That concludes the explanation of the meanings of the termsLk,Wr, andTw in (2).
To derive (2) one takes, explicitly, the intended limit of an infinitely narrow ribbon in the
integrand of (3) forLk. Convert (3) to an integral over the ribbon axis coordinatest and
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Figure 2. The ribbon is no longer shown, but its central axis loop is pictured on the left in bold
as a slightly bent circle. The directions of all possible chords of the loop are represented by
unit vectors in the unit sphere on the right, with tips lying in the shaded area. The two chord
endpoint positions on the loop, (t, t ′), thus form a coordinate net (not shown) filling this shaded
area. The two boundary lines of the net are formed by the set of loop unit tangent vectors and
their reverses. For a more bent loop the net could have folds which could cross the boundary
lines and indeed render the whole sphere shaded.

t ′ by associating, with each value of coordinate, the vectorsr′ andr of the closest point
on each ribbon edge. Thus dr = ṙ(t)dt , and dr′ = ṙ(t ′)dt ′. The term 1/|r′(t ′) − r(t)|3
becomes, in the limit, 1/|r(t ′)− r(t)|3 + (2/|r′(t)− r(t)|2|ṙ(t)|)δ(t ′ − t). In the integral,
the second term here can be interpreted asTw directly, and settingr′(t ′) = r(t ′) in the
numerator in (3), the first givesWr (expressed in terms oft and t ′).

The proof of (1) follows by considering a frame turning but also translating and thereby
generating a ribbon. The frame is to be described by the unit vectoru and any orthogonal
vectorv whose magnitude will be taken indefinitely small. As the frame turns, these vectors
rotate, but also their common origin translates with unit velocityu(t), so that the timet
measures arc length along its path. The ribbon is to be the surface in space swept out by the
vectorv(t). It can then be extended to form a closed loop by adding a flat ‘return’ section
of ribbon joining the final to the initial vectorsv and lying in their plane. Its shape is
unimportant except that it should not cross itself, and the tangent vectors should be parallel
at the two ends, indeed both perpendicular to the vectorsv (and in their plane).

The result (1) emerges on writing down the Calugareanu relation (2) for this ribbon
loop. The twistTw of the ribbon is

∫
ω · u dt/2π for the outward section whereω is the

angular velocity vector of the frame, plus zero for the return section. Likewise, the solid
angle enclosed by the ribbon axis tangent vectoru is � for the outward section, plus zero
for the return section, plus a total of 2π from the sharp turns at each end. Thus using (6)
the quantity (Wr mod 2) of the ribbon equals 1+ (�+ 2π)/2π = �/2π mod 2.

There remains the linking numberLk of the ribbon edge loops. Only the value of
Lkmod 2 is required, and this value is shared by any deformation of the ribbon loop
because, as Fuller notes, the value ofLk jumps by 2 if the ribbon passes through itself.
Thus, to findLkmod 2 the outward section of the ribbon can be ‘pulled’ straight. Its value
is then the number of twists mod 2 in the outward section. However, recalling Dirac’s ‘belt
trick’ [8, 9], this is zero if the sequence of orientations passed through by the unit sphere
was contractible, and unity if it is non-contractible in the space of orientations SO(3). That
is, Lkmod 2= n, the turn number of the frame. Combining the three termsLk, T w, and
Wr, all mod 2, to form the Calugareanu relation (mod 2) yields (1) as claimed.
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The form of the result (1) invites an alternative derivation via the quantum mechanics
of spin 1

2 which runs, in outline, as follows. The unitary operator corresponding to the
cyclic rotation of a spin1

2 is known to be the identity operator times(−1)n, wheren has the
same meaning as previously. This rotation is achieved by a time-dependent Hamiltonian
H = 1

2h̄ω(t) · σ, whereσ is the vector of Pauli matrices. The Hamiltonian drives a
general spin1

2 state along a path described, up to overall phase, by a density matrix
ρ = 1

2(1 + u(t) · σ). The total phase change of a state can be split up in the manner
of Aharonov and Anandan [10] into the geometric, Berry phase [11] plus a remaining
‘dynamical’ phase. The total phase isnπ , the Berry phase is minus half the solid angle
� enclosed byu(t), and the dynamical phase is− ∫ Tr(Hρ/h̄) dt = − 1

2

∫
ω · u dt . Thus,

mod 2π , one hasnπ = 1
2�+ 1

2

∫
ω · u dt , which is (1).

Finally it can be noted how the formula (1) applies to parallel transport holonomy.
Consider a smooth closed curve drawn on a smooth curved surface, with arc length along
it denoted byt . An orthogonal frame at each point along the circuit is defined by surface
normal unit vectoru and curve tangent vectorv. The frame has an ‘angular velocity’ vector
with respect to change in the positiont , and the integral

∫
ω ·u dt , equals the angleθ(t) that

the frame has rotated (about the vectoru) with respect to a frame parallel transported along
the curve. After a complete circuit, as is well known from the Gauss–Bonnet theoremθ is
equal to (minus) the integrated Gaussian curvature of the enclosed area of surface, which, in
turn is (minus) the solid angle� enclosed by the motion of the vectoru : θ+� = 0 mod 2π .
However, from (1) this result can be refined to

2πn = �+ θ mod 4π (7)

where the turn numbern is 0 if the sequence of frame orientations is contractible and 1
otherwise.

I am grateful for the detailed comments of R Montgomery and to M V Berry for discussions.
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